

Fused-Core® Particle Technology

Application Note: 112-P

Separation of Dinitrophenylhydrazones on HALO 2 C18

PEAK IDENTITIES:

- Formaldehyde-2,4-DNPH
- Acetaldehyde-2,4-DNPH
- Acetone-2,4-DNPH
- Acrolein-2,4-DNPH
- Propionaldehyde-2,4-DNPH
- Crotonaldehyde-2,4-DNPH
- 2-Butanone-2,4-DNPH
- 8. Methacrolein-2,4-DNPH
- Butyraldehyde-2,4-DNPH
- 10. Benzaldehyde-2,4-DNPH
- 11. Valeraldehyde-2,4-DNPH
- 12. m-Tolualdehyde-2,4-DNPH
- 13. p-Tolualdehyde-2,4-DNPH
- 14. Hexaldehyde-2,4-DNPH

D₁

ما د م

15. 2,5-Dimethylbenzaldehyde-2,4-DNPH

Ro

2, 4-DNPH = 2,4-Dinitrophenylhydrazone

TEST CONDITIONS:

Column: 2.1 x 100 mm, HALO 2 µm C18 Part Number: 91812-602

Mobile Phase: A/B: 55/45 (to start)

A= Water

B= (Acetonitrile/THF): (80/20 v/v)

%B Time 0.0 - 3.545 3.5 - 1045 - 60

Flow Rate: 0.5 mL/min. Pressure: 545 Bar

Temperature: 30°C Detection: UV 360 nm, VWD

Injection Volume: 0.5 µL

Sample Solvent: 50/50 Acetonitrile/Water

Data Rate: 40 Hz Response Time: 0.1 sec. Flow Cell: 2.5 µL semi-micro LC System: Agilent 1200 SL

STRUCTURES:

General -2.4-DNPH structure

Response Time: 0.1 sec. Flow Cell: 2.5 μL semi-micro LC System: Agilent 1200 SL	
Using modified EPA methods 8315 and 554, baseline	
resolution of the sample components is achieved by the use of	
a HALO 2 column and a mobile phase containing both	
acetonitrile and tetrahydrofuran (THF). The addition of THF	

Реак 1	K1 -H	H2 -H
2	-H	—CH ₃
3	—СH ₃	—CH ₃
4	-H	CH ₂
5	-H	CH₃
6	-H	$H \longrightarrow CH_3$
7	—СH ₃	∕_CH ₃
8	-H	CH ₂
9	-H	∕_CH ₃
10	-H	√
11	-H	VCH₃
12,13	-H	CH₃
14	-H	_(CH ₂)4 CH ₃
15	-H	H ₃ C
		H₃C

.advanced-materials-tech.com

peak elution order.

FOR MORE INFORMATION OR TO PLACE AN ORDER, CONTACT:

is necessary to achieve this resolution, which also changes