16-Channel Multidetector-row Computed Tomographic Angiography to Diagnose BCVI

<table>
<thead>
<tr>
<th>Author</th>
<th>Reference</th>
<th>Data Class</th>
<th>Conclusions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berne JD, et al.</td>
<td>Sixteen-slice multi-detector computed tomographic angiography improves the accuracy of screening for blunt cerebrovascular injury. J Trauma 2006; 60:1204-1210.</td>
<td>II</td>
<td>Design:
1. Prospective screening 435 patients with CTA
2. Angiography to study those with abnormal or equivocal CTA results
3. Patients with normal CTA followed clinically

Findings:
1. 24 patients with 25 injuries
2. Patients with normal CTA did not manifest ischemic complications during clinical follow-up

Comments:
Cannot assess true sensitivity or NPV compared to reference standard (i.e. – angiography)</td>
</tr>
<tr>
<td>Biffl WL, et al.</td>
<td>Sixteen-slice computed tomographic angiography is a reliable noninvasive screening test for clinically significant blunt cerebrovascular injuries. J Trauma 2006; 60:745-752.</td>
<td>II</td>
<td>Design:
1. Prospective screening 331 patients with CTA
2. Angiography to study those with abnormal or equivocal CTA results
3. Patients with normal CTA followed clinically

Findings:
1. 17 patients with BCVI imaged with both CTA and angiography met screening criteria
2. Patients with normal CTA did not manifest ischemic complications during clinical follow-up

Comments:
Cannot assess true sensitivity or NPV compared to reference standard (i.e. – angiography)</td>
</tr>
<tr>
<td>Eastman AL, et al.</td>
<td>Computed tomographic angiography for the diagnosis of blunt cervical vascular injury: is it ready for primetime? J Trauma</td>
<td>II</td>
<td>Design:
1. Prospective blinded observational
2. Screened for BCVI with CTA
3. 146 patients followed with angiography (both positive and negative CTA results)</td>
</tr>
</tbody>
</table>
16-Channel Multidetector-row Computed Tomographic Angiography to Diagnose BCVI

| 2006; 60:925-929. | **Findings:**
1. 43 patients with 46 BCVIs
2. BCVI sensitivity 98%, specificity 100%, PPV 100%, NPV 99%
3. Carotid artery injury sensitivity and specificity 100%
4. Vertebral artery injury sensitivity 96%, specificity 100%

Comments:
1. Small number of patients with more than one injured vessel
A. Literature reports frequency of 18%-32%

| Malhotra AK, et al. | **Design:**
1. Prospective observational study.
2. Patients at-risk for BCVI based on institutional screening criteria.
3. 92 patients studied with both CTA and DSA over 40-month period.

Findings:
1. 23 patients with 26 BCVIs
2. Sensitivity 74%, NPV 90%
 A. 1st half of study: sensitivity 67%, NPV 70%
 B. 2nd half of study: sensitivity 100%, NPV 100%
3. Specificity 84%, PPV 63%
 A. 1st half of study: specificity 78%, PPV 75%
 B. 2nd half of study: specificity 86%, PPV 65%
4. False positive CTAs: most were “Grade I” injuries
 A. Carotid art: 3 of 4
 B. Vertebral art: 6 of 7
5. False negative CTAs:
 A. Carotid art: 4 injuries (grade I, n = 2, grade II, n = 1, grade III, n = 1)
 B. Vertebral art: 3 injuries (all grade I)

Comments:
1. Results based on imaging reports
 A. No re-assessment to counter the “learning curve”
2. Small number of patients with more than one injured vessel
 A. Literature reports frequency of 18%-32%

| Sliker CW, et al. | Diagnosis of Blunt Cerebrovascular Injuries with 16-channel Multidetector Computed Tomography: Accuracy of Whole-body MDCT Compared to Neck MD-CTA. AJR (In Press, accepted for publication - 2007). | III | **Design:**
1. Two patient subsets
 A. One retrospectively identified through review of radiology reporting system
 B. One identified through prospective observation
2. Neck CTA vs. whole-body MDCT with angiography reference
 A. CTAs reviewed retrospectively to account for “learning curve”
 B. Angiography reports utilized
3. Angiography techniques not standardized
 A. Four-vessel exams not routine
 B. Exam of all segments within given vessel not routine

Findings:
1. BCVI in 83 out of 108 patients
 A. 25 out 83 patients with more than one injury (30%)
2. Neck MD-CTA and whole-body MDCT results statistically comparable results for diagnosing BCVI
3. Carotid artery cervical segments
 A. Neck MD-CTA sensitivity 64%, specificity 94%
 B. Whole-body MDCT sensitivity 69%, specificity 82%
4. Vertebral artery cervical segments
 A. Neck MD-CTA sensitivity 68%, specificity 100%
 B. Whole-body MDCT sensitivity 74%, 91%

Comments:
1. Injuries not graded

Design:
1. Literature Review
2. Two studies discussing blunt trauma
3. Two studies penetrating trauma
4. 39 studies atherosclerosis or other (i.e. – dissection)

Findings:
1. CTA sensitivity for atherosclerotic stenoses > 30% is 95%
2. CTA specificity for atherosclerotic stenoses > 30% is 98%-100%

Comments:
1. Many traumatic lesions are either small intimal flaps, injuries with stenosis < 30 %, or pseudoaneurysms
 A. AVF less common but important
2. Studies concerned with trauma based on older scanners