Evidence Based Trauma Radiology

C. Craig Blackmore, MD, MPH
Department of Radiology
Scientific Director, Center for Healthcare Solutions
Virginia Mason Medical Center

Disclosure:

Book Royalties, Springer-Verlag

Evidence Based Imaging: Optimizing Imaging for Patient Care

Evidence Based Imaging in Pediatrics: Optimizing Imaging for Patient Care
Quality in Medicine

- IOM 1999 report:
 - “To err is human: Building a safer health system”
- Preventable deaths
 - 44,000 to 98,000 in medical centers/year in US
- Research
 - Omission, commission, communication

Rising Healthcare Costs
Health Care as % Gross Domestic Product (GDP)
What We Get for All Those Dollars

• U.S. over 17% of GDP for health care is:
 ▪ 2X developed country avg. of 8.3%
 ▪ 50% higher than #2 Switzerland

• WHO report, 2003 – U.S.:
 ▪ Has the 37th best health care in the world
 ▪ Ranks 47th in life expectancy
 ▪ Ranks 42nd in infant mortality
 ▪ Worse than all Nordic countries

Healthcare Expenditures

<table>
<thead>
<tr>
<th></th>
<th>% GDP 2003</th>
<th>Five year increase (%)</th>
<th>Per capita ($)</th>
<th>Life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>10.3</td>
<td>10</td>
<td>5000</td>
<td>80</td>
</tr>
<tr>
<td>Sweden</td>
<td>9.4</td>
<td>12</td>
<td>3100</td>
<td>81</td>
</tr>
<tr>
<td>Finland</td>
<td>7.4</td>
<td>7</td>
<td>2300</td>
<td>79</td>
</tr>
<tr>
<td>Denmark</td>
<td>9.0</td>
<td>6</td>
<td>3800</td>
<td>78</td>
</tr>
<tr>
<td>Iceland</td>
<td>10.5</td>
<td>12</td>
<td>3500</td>
<td>81</td>
</tr>
<tr>
<td>US</td>
<td>15.2</td>
<td>16</td>
<td>5700</td>
<td>78</td>
</tr>
</tbody>
</table>
Current State

- Cottage industry
 - Prior to industrial revolution
 - Individual artisans
 - Customized care
 - Fragmented
 - Only 50% evidence supported care
 - 20% of provided care unnecessary

Swensen, NEJM 2010

Growth in Imaging Procedures

Swensen, NEJM 2010
Radiation

• CT now largest source of medical radiation
 ▪ CT most rapidly rising
• Over 50% variation in imaging rates in US regions
• Increasing awareness and scrutiny
• Emergency radiology perceived as a major source of overutilization

Parker, AJR 2008

Objectives

• Introduce Evidence Based Imaging
• Apply EBI to trauma radiology
 ▪ Who should undergo imaging?
 • Clinical prediction rules
 ▪ How should we image?
• Future of EBI
Evidence Based Medicine

- McMaster/Oxford mid-1990s
- Medical decision making based on “integration of best research evidence with clinical expertise and patient values”

Sackett, et al. Evidence-Based Medicine 2000

Evidence Based Medicine

- Ask- answerable question
- Search- relevant literature
- Appraise- literature critically
- Summarize- evidence
- Apply- evidence to guide action
Ask

• “Is head CT useful in trauma patients?”

PICO

- Patient
- Intervention
- Comparison
- Outcome
Ask

• “Is head CT useful in trauma patients?”
• In young neurologically intact trauma victims, is unenhanced head CT superior to clinical exam for the detection of surgically important intracranial injury?

Search

• Comprehensive
• Unbiased
• Search is “subject recruitment”
• PubMed
• Embase
• Medical librarian
Appraise

- Critical assessment
- Predefined criteria
 - STARD
 - QUADAS
- New skill set
 - Limited experience in training
- Determine included papers

Summarize

- Meta-analysis
 - Requires multiple similar high quality studies
- Formal pooling of results
- Summary of differences
Apply

• Institute evidence based best practices

Evidence Based Medicine v. Eminence Based Medicine

• Systematic
• Critical
• Transparent
Challenges with EBM

- Too little evidence
 - 10-40% of medicine is backed by “evidence”
 - John Snow and cholera

- Too much evidence
 - Over 100 radiology journals
 - Radiology- 877,103 articles*

*April 26, 2010
Challenges with EBM

• Too little evidence
 ▪ 10-40% of medicine is backed by “evidence”
 ▪ John Snow and cholera, 1854

• Too much evidence
 ▪ Over 100 radiology journals
 ▪ Radiology- 877,103 articles

• Dissemination
 ▪ Attention of provider
 ▪ Disinformation
 ▪ Provider resistance

EBI Options

• Bottom-up
 ▪ Individually review literature
 • relevance
 • quality
 • timeliness
 ▪ Disadvantages
 • effort
 • expertise
EBI Options

• Top-down
 ▪ Published EBI reviews
 • fast and easy
 • EBM/I expertise
 ▪ Disadvantage
 • trust

Evidence Based Medicine

• Ask- answerable question
• Search- relevant literature
• Appraise- literature critically
• Summarize- evidence
• Apply- evidence to guide action
Imaging is Different

• Effect of imaging on outcome
• Testing v. Treatment
 ▪ Imaging is information
 ▪ Use diagnosis to guide action
• Challenges in measuring imaging effectiveness
 ▪ Effect of imaging is mediated (confounded) by treatment
 ▪ RCTs of imaging outcomes rare

Imaging “Outcomes”

• Accuracy (sensitivity/specificity)
• Medical decision making
 ▪ Before/after
• Diagnostic yield
 ▪ Imaging unnecessary
• Clinical Prediction Rules
Clinical Prediction Rule

- Decision making tool
 - Multiple factors
 - Define who should be imaged
- Validated
 - Shown to work
 - Multiple populations

Clinical guideline
Evidence based summary
Appropriateness criteria
Best practice
Meta-Analysis
Utilization guideline
Benchmark
Clinical decision tool
Consensus opinion
White paper
Clinical Prediction Rule

VALIDATED

Strength of Evidence

• Clinical Prediction Rules
• Evidence Based Guidelines
 ▪ Formal evidence synthesis
• Panel recommendations
 ▪ Experts, literature review
• Opinion
Strength of Evidence

- Clinical Prediction Rules
- Evidence Based Guidelines
 - Formal evidence synthesis
- Panel recommendations
 - Experts, literature review
- Opinion

Objectives

- Introduce Evidence Based Imaging
- Apply EBI to trauma radiology
 - Who should undergo imaging?
 - Clinical prediction rules
 - How should we image?
- Future of EBI
Clinical Prediction Rules

- Ottawa ankle rules
 - Ottawa Foot Rule, Ottawa Knee Rule
- Cervical spine
 - NEXUS, Canadian C-Spine rules
- Head CT
 - New Orleans, Canadian Head CT, CHIP
 - CHALICE, CATCH
- Thoracolumbar spine

Ottawa Ankle Rule
Ottawa Ankle Rules

- Unable to bear weight
- Tenderness at posterior edge or inferior tip of lateral malleolus
- Tenderness at medial malleolus

Stiell, JAMA, 1993; 269: 1127-1132

Ottawa Ankle Rule

- Developed and validated in Ottawa
- Subsequent validation in US, Germany, Asia
- Sensitivity 100%
- Decrease imaging by 34%
 - Site specific
- May be less successful with triage nurses
Ottawa Ankle Rule

• Ottawa Foot Rule
• Ottawa Knee Rule

Cervical Spine Imaging

• NEXUS
 ▪ Validated in 21 US medical centers
 ▪ Based on actual practice
 ▪ Sensitivity 100%
 ▪ Limited ability to decrease imaging
• Canadian Cervical Spine Rule
 ▪ Develop and validate in multi-institution study
 ▪ Sensitivity 100%
NEXUS

• Image if:
 ▪ Tenderness at posterior midline of c-spine
 ▪ Focal neurological deficit
 ▪ Abnormal level of alertness
 ▪ Evidence of intoxication
 ▪ Clinically apparent pain that might distract patient from pain of cervical spine injury

New Orleans Criteria (NOC)

• Clinical findings absent in patients without intracranial injury
• 100% Sensitive
• 22% Reduction in head CTs
• Validated in Holland

(Smits et al. JAMA Sept. 2005)
New Orleans Criteria

CT required if: >3 years old, with minor head injury, GCS 15, and 1 of the following:

1. Headache
2. Vomiting
3. Age >60 years
4. Drug or alcohol intoxication
5. Short term memory deficits
6. Visible trauma above the clavicles
7. Seizure (after the head injury)

Canadian Head CT Rule

• High risk factors (100% sensitive)
 ▪ GCS <15 within 2 hours
 ▪ Suspected open skull fracture
 ▪ Sign of basal skull fracture
 ▪ Vomiting at least 2 times
 ▪ Age >65
CT in Head Injury Patients (CHIP)

- Includes subjects with or without LOC
- For neurosurgical intervention
 - 100% sensitive
 - 30% specific
- 3364 patients
- Netherlands
- Likely cost-effective

Smits, M 2007 Ann Int Med

CHIP

- Major Criteria (any 1)
 - Pedestrian or bike struck by car
 - Ejected from vehicle
 - Vomiting
 - Amnesia>4hr
 - Clinical signs skull fx
 - GCS<15
 - Anticoagulants
 - Seizure
 - Age>60

- Minor criteria (any 2)
 - Fall
 - Anterograde amnesia
 - Skull contusion
 - LOC
 - GCS deterioration of 1 point
 - Age 40-60
CHALICE

- Children’s Head injury ALgorithm for the prediction of Important Clinical Events
- 10 hospitals in England
- Developed on 22,772 children
 - 281 abnormal head CT
 - Sensitivity of 98%
- Not yet validated
- History, exam, mechanism

CATCH

- Not Validated
- High risk factors
 - GCS<15 at 2 hours
 - Suspect open skull fracture
 - Worsening headache
 - Irritability
- Sensitivity 100%
- Specificity 30%

Osmond, MH 2010 CMAJ
Thoracolumbar Spine

- Limited evidence
- Validated clinical prediction rule
 - 2404 subjects
 - Sensitivity 100%
 - Specificity 4%
- Limited effect on utilization

Holmes, J Emerg Med 2003

Holmes Criteria

- Thoracolumbar spine pain
- Thoracolumbar midline spine tenderness
- Decreased level of consciousness
- Abnormal peripheral nerve examination
- Distracting injury
- Intoxication
Objectives

• Introduce Evidence Based Imaging
• Apply EBI to emergency radiology
 ▪ Who should undergo imaging?
 • Clinical prediction rules
 ▪ How should we image?
• Future of EBI

How Should We Image?

• Competing modalities
• Comparison of accuracy
 ▪ Assume all other factors equal
• Cost-effectiveness analysis
 ▪ More assumptions
Comparison of Accuracy

- Blunt cerebrovascular injury
 - DSA-reference standard
 - CTA-high sensitivity and specificity
 - Imperfect
 - Confounding factors
 - Time, contrast, cost, radiation
- Accuracy insufficient

CT v. Radiography for Cervical Spine Trauma

- CT cost-effective if fracture risk > 4%
- Why?
 - Frequency of inadequate radiographs
 - Extreme cost of missed fracture
 - small percentage develop paralysis
 - Higher cost of radiography in high-risk
 - Higher radiation exposure from CT

Harborview Cervical Spine CT Criteria

- Focal neurological deficit
- Severe head injury
 - skull fracture
 - intracranial hemorrhage
 - unconscious
- High energy mechanism
 - MVC speed > 35mph
 - auto vs. pedestrian
- Head CT

Hanson, et al, AJR 2000:174:713-718

Objectives

- Introduce Evidence Based Imaging
- Apply EBI to trauma radiology
 - Who should undergo imaging?
 - Clinical prediction rules
 - How should we image?
- Future of EBI
Future

• Increased resources for practitioners
• Dilution of “Evidence”
• Increased emphasis on top-down EBI for payment decisions
• More appropriate use of healthcare resources
Resources

• Top down EBI
 ▪ Books, websites, journals
 ▪ Societies/organizations
 • NORDTER
 ▪ Governmental programs
 ▪ Awareness

NORDTER

• Validation of clinical pathways
• Experience with Evidence based Pathways
 ▪ Cervical spine imaging
 ▪ Cerebrovascular injury
• Implement and test
 ▪ Are correct patients being imaged with appropriate modality?
 ▪ Do clinical pathways work?
Head CT Guidelines

• Dutch Guidelines 2001
• World Federation of Neurosurgical Societies (WFNS) 2001
• European Federation of Neurological Societies (EFNS) 2002
• National Institute for Clinical Excellence (NICE) 2001
• Scottish Intercollegiate Guidelines Network (SIGN) 2000
• Scandinavian 2000

Future

• Increased resources for practitioners
• Dilution of “Evidence”
• Increased emphasis on top-down EBI for payment decisions
• More appropriate use of healthcare resources
Dilution

- Marketing of “Evidence-Based”
 - Sell product or viewpoint
- Quality of EBI is variable
 - Advertising
 - Appropriateness Criteria
- Trust/understand methods

Future

- Increased resources for practitioners
- Dilution of “Evidence”
- Increased emphasis on top-down EBI for payment decisions
- More appropriate use of healthcare resources
Washington State Health Technology Assessment Program

- Improve healthcare through EBM
 - Payment decisions (20% of population)
- Perform formal tech assessments
 - Outside consultant
- Healthcare Technology Clinical Committee (3/2007)
 - Coverage decisions
- Tests/ procedures

Washington HTAP

- Upright MRI for back pain
- Pediatric bariatric surgery
- Lumbar fusion surgery for back pain
- Discography for diagnosis
- CT colonography screening
- Drug eluting coronary stents
- Knee arthroscopy for osteoarthritis
Clinical Decision Support

- Computer interface with required indications for imaging studies
- Denial if not listed indication
- Effective
- Intrusive
- Generally limited to outpatient (not emergency)

Evidence Based Imaging
Clinical Decision Support

• Restrict imaging systematically
 ▪ Good-eliminate unnecessary imaging
 ▪ Bad-block effective imaging
 ▪ Criteria may or may not be evidence based
• Wide adoption in US within 3 years
 ▪ Driven by payers, health plans, American College of Radiology

Future

• Increased resources for practitioners
• Dilution of “Evidence”
• Increased emphasis on top-down EBI for payment decisions
• More appropriate use of healthcare resources
Appropriate Imaging

• Focus on quality not cost
• Radiologist involvement
 ▪ Define quality
• Patient first
 ▪ Cannot be self-serving in defining appropriate
• Collaborative

Future of EBI

• More research/evidence
• Define value of radiology
• Financial pressures will outweigh physician preferences
Objectives

• Introduce Evidence Based Imaging
• Apply EBI to trauma radiology
 ▪ Who should undergo imaging?
 • Clinical prediction rules
 ▪ How should we image?
• Future of EBI