Diagnosis and Treatment of Blunt Cerebrovascular Injuries

NORDTER Consensus Conference
October 22-24, 2007

Clint W. Sliker, M.D.
University of Maryland Medical Center
R Adams Cowley Shock Trauma Center
Department of Diagnostic Radiology and Nuclear Medicine
University of Maryland School of Medicine

Role of the Radiologist

• Endovascular treatment
• Diagnosis
Treatment of Blunt Cerebrovascular Injuries

Endovascular Treatment

Endovascular Treatment

• Blunt carotid artery injuries (BCI)
• Blunt vertebral artery injuries (BVI)
Blunt Carotid Artery Injuries

- Few studies
- Reported experience growing
- Stents

Procedure complications – either no or subtherapeutic anticoagulation.

Follow-up mean 72 days.

All stent occlusion anticoagulated.

Stents and antiplatelet therapy.

<table>
<thead>
<tr>
<th>Patients – total</th>
<th>Complications of Procedure</th>
<th>Treatment Failure (Break-through stroke)</th>
<th>Arterial Occlusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen JE et al (Stroke 2005)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cohen CC et al (Arch Surg 2005)</td>
<td>23</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>
Blunt Carotid Artery Injuries

<table>
<thead>
<tr>
<th>Patients total</th>
<th>Complications of Procedure</th>
<th>Treatment Failure (Breakthrough stroke)</th>
<th>Arterial Occlusion</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards et al (J Am Coll Surg 2007)</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Stein et al (J Trauma – In Press)</td>
<td>21</td>
<td>?</td>
<td>1</td>
<td>?</td>
</tr>
</tbody>
</table>

- Small number of patients
- Cothren et al highest complication rate
 - Suboptimal peri-procedural anticoagulation
 - May be technique-related
Questions

- What is the true role of stents?
- Hemodynamically significant or symptomatic BCI
 - Should stents be first-line treatment options?

Questions

- Best adjuvant medical therapy?
 - Antiplatelet therapy?
 - Anticoagulation?
- Long term stent patency?
- Long term neurologic outcomes?
Blunt Vertebral Artery Injuries

- Little objective data
- Mainly case series describing therapeutic options

Veras LM (Spine 2000)
- Six Grade IV BVI (occlusions)
 - 3 not treated
 - 2 asymptomatic
 - 1 TIA
 - 3 anticoagulated
 - 2 asymptomatic
 - 1 stroke
Blunt Vertebral Artery Injuries

• 75% Grade IV BVI may recanalize
• May explain Veras et al. data
• Justification for coil occlusion

1 Parbhoo et al (Injury 2001)

Blunt Vertebral Artery Injuries

• Stein DM et al (J Trauma – In Press)
 – 12 BVI treated with coils
 • All Grade IV (i.e. – segmental occlusions)
 • Four also receive antiplatelet therapy
 – No symptomatic patients
 – 1 asymptomatic posterior fossa stroke
 • Incidentally discovered on follow-up MRI
Questions

• What is the true role of endovascular treatment?
• Does permanent occlusion influence outcomes with Grade IV injuries?
 – Better than medical therapy alone?

Questions

• Endovascular treatment may be best for:
 – Transections
 – Symptomatic AVFs
 – Symptomatic pseudoaneurysms
• What about other lesions?
 – Intimal flaps
 – Thrombi
 – Enlarging pseudoaneurysms
Conclusions

• Many unanswered questions
• Routine use
 – Role needs to be defined
 – May not be first-line in many lesions
• Long-term neurologic consequences uncertain

Conclusions

• Antiplatelet agents & anticoagulation improve outcomes
• Symptomatic probably benefit most
 – Hemodynamically significant lesions
 – Transections
 – Refractory to medical treatment
Diagnosis of Blunt Cerebrovascular Injuries

Diagnostic Imaging Options

- Angiography
- Ultrasound
- MRA
- Computed Tomography
Angiography

• Digital subtraction angiography (DSA)
• Four-vessel examination
• Diagnostic reference standard

Angiography

• Invasive
• Safe with *experienced* operators
• Risk of stroke 0.07%-1.3%
 • 727 patients screened for BCVI
 • One (0.1%) procedure-related stroke
Angiography

- Time consuming
- Labor intensive
- Expensive
- Limited availability
 - Small institutions
 - *Busy* large institutions

Ultrasound

- Established - non-traumatic disease
- Available most trauma centers
- Portable
- Easily integrated initial resuscitation
- Inexpensive
Ultrasound

• Operator dependent
• Acoustic windows limited
 – Cervical collars
 – Soft tissue gas
 – Support tubes and catheters

Ultrasound

• Boney canals obscure injuries
 – Transverse foramina
 – Skull base
Ultrasound

• Small lesions without flow disturbance
 – Intimal flaps or pseudoaneurysms
 – Sites of platelet aggregation
 – Sources of distal emboli

Accuracy

• Few studies
• Results poor
 – Cogbill et al (J Trauma 1994)
 – Mutze et al (Radiology 2005)
Accuracy

• Cogbill et al (J Trauma 1994)
 – Retrospective
 – 49 patients
 • Blunt carotid artery injuries only
 – Sensitivity 86%
 • Injuries limited to neck

 Accuracy

• Mutze et al (Radiology 2005)
 – Prospective observational
 – Sensitivity for BCVI 38.5%
 • US missed 8 injuries
 • All resulted in stroke
Magnetic Resonance Angiography

• Established - non-traumatic disease
• Concurrently evaluate cervical spine
• No intravenous contrast
• No ionizing radiation

MRA

• Time consuming
• Transport from acute care area
• Difficult to monitor severely injured
• Limited availability
 – Small institutions
 – Busy large institutions
Accuracy

- Few studies
- None contemporary
 - Biffl et al (J Trauma 2002)

MRA

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Injuries</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biffl et al</td>
<td>16</td>
<td>4</td>
<td>75%</td>
<td>67%</td>
</tr>
<tr>
<td>(J Trauma 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller PR</td>
<td>21</td>
<td>21</td>
<td>BCI 50%</td>
<td>BCI 100%</td>
</tr>
<tr>
<td>(Ann Surg 2002)</td>
<td></td>
<td></td>
<td>BVI 47%</td>
<td>BVI 97%</td>
</tr>
</tbody>
</table>

- Scanners
 - Biffl et al: 1.5 T
 - Miller et al: 0.2T open
- Do not reflect contemporary scanners
Computed Tomographic Angiography

- Quick
- Accessible
- Operator independent
- Inexpensive
- Diagnose non-vascular injuries

Single Slice Spiral CTA

<table>
<thead>
<tr>
<th></th>
<th>BCI(^1,2)</th>
<th>BVI(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>47-68%</td>
<td>53%</td>
</tr>
<tr>
<td>Specificity</td>
<td>67-99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

- Stroke 33% missed injuries\(^1\)
- Sensitivity insufficient for routine use

\(^1\) Miller et al (Ann Surg 2002), \(^2\) Biffl et al (J Trauma 2002)
Multidetector-row CTA

- Number of recent studies
- General use for screening
- Diagnostic accuracy

Screening

- Schneidereit et al (J Trauma 2006)
 - 8-slice MD-CTA
 - Formal CTA-based screening protocol
 - High-risk patients
 - CTA replace cervical spine CT
Screening

- Schneidereit et al (J Trauma 2006)
 - Incidence BCVI
 - Pre-screening 0.17%
 - Post-screening 1.4%
 - BCVI-specific mortality
 - Pre-screening 38%
 - Post-screening 0%

Accuracy

- 16-slice MD-CTA
 - Most advanced reported
 - Berne JD et al (J Trauma 2006)
 - Biffl WL et al (J Trauma 2006)
 - Eastman AL et al (J Trauma 2006)
16-slice MD-CTA

<table>
<thead>
<tr>
<th>Subjects - Total</th>
<th>Subjects - Injured</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td>24</td>
<td>?</td>
<td>?</td>
<td>Abnormal CTA – angiography Normal CTA – Clinical follow-up Normal CTA – No strokes</td>
</tr>
<tr>
<td>331</td>
<td>17</td>
<td>?</td>
<td>?</td>
<td>Abnormal CTA – angiography Normal CTA – Clinical follow-up Normal CTA – No strokes</td>
</tr>
</tbody>
</table>

- Both studies – Screening for BCVI
 - Patients high-risk for BCVI
- 16-slice MD-CTA vs. angiography
 - Accuracy uncertain
- Does not miss “clinically significant” injuries

16-slice MD-CTA

<table>
<thead>
<tr>
<th>Subjects - Total</th>
<th>Subjects - Injured</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>43</td>
<td>98%</td>
<td>100%</td>
<td>Prospective observational All CTA followed by angiography</td>
</tr>
<tr>
<td>92</td>
<td>26</td>
<td>74%</td>
<td>84%</td>
<td>Prospective observational All CTA followed by angiography 2nd Half Study: sensitivity 100%, specificity 86%</td>
</tr>
</tbody>
</table>

- Mallhotra et al: 2nd half of study
 - Sensitivity improved – “learning curve”
 - Specificity still relatively low
16-slice Whole-body MDCT

• Whole-body scanning
 – Cervical spine through pelvis
 – One data acquisition
 – One contrast dose

16-slice Whole-body MDCT

• Becoming common at trauma centers
 – Quicker patient through-put
 – Less radiation than segmental approach
16-slice Whole-body MDCT

- Cervical spine contrast-enhanced
 - “Free” CTA of neck
 - More artifact than CTA
 - Diagnostic evaluation of arteries

University of Maryland – Shock Trauma

- Whole-body MDCT
 - Standard
 - Blunt trauma
 - Cervical spine and chest CT’s
 - (+/- abdomen-pelvis CT)
University of Maryland – Shock Trauma

• Neck MD-CTA
 – Head & Neck only sites of concern
 – Equivocal or non-diagnostic WB-MDCT
 • Risk factors for BCVI
 • Clinical or imaging signs of ischemia

Sliker CW et al. (AJR – In Press)

• 16-slice MDCT
• Neck MD-CTA vs. whole-body MDCT
• Angiography reference
Sliker CW et al. (AJR – In Press)

• MD-CTA and whole-body MDCT
 – Reviewed in retrospect
 – Consensus diagnosis among two radiologists
 – Account for “learning curve”

Whole-body MDCT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck MD-CTA</td>
<td>64%</td>
<td>94%</td>
<td>68%</td>
<td>82%</td>
</tr>
<tr>
<td>Whole-body MDCT</td>
<td>69%</td>
<td>82%</td>
<td>74%</td>
<td>91%</td>
</tr>
</tbody>
</table>

• BCVI in 83 of 108 patients
• Neck MD-CTA and whole-body MDCT
 – Statistically comparable accuracy to diagnose BCVI
• Allows for large scale screening for BCVI
Frequency of BCVI at STC

Diagnosis of Blunt Cerebrovascular Injuries

What do they look like?
Appearance

• Varied appearances similar across different modalities
 – Angiography
 – MRA
 – CTA

• Cross-sectional imaging
 – Visualize intramural hematoma.

Grade I – Dissection
Grade I - Dissection

Grade I – Intimal Injury
Grade II –
Intimal Flap & Intramural Thrombus

Grade II –
Intramural Hematoma
“Grade II” - Arteriovenous Fistula

Grade III - Pseudoaneurysm
Grade IV - Occlusion

Grade V - Transection
Grade V – Arteriovenous Fistula

Conclusions

- Angiography reference standard
 - Expensive
 - Invasive
 - Practical limitations
 - Not ideal for screening
Conclusions

• MRA and US not desirable alternatives
 – Practical limitations
 – Accuracy low

Conclusions

• MRA and US may play limited roles
 – US – immediate assessment unstable patient
 – MRA – contrast allergy
Conclusions

• 16-slice MD-CTA
 – Lingering questions of accuracy
 – Probably “good enough” for screening
 – Angiography may be needed some cases
 • Normal CTA
 • High clinical suspicion BCVI

Conclusions

• 16-slice whole-body MDCT
 – May facilitate large scale screening
 – Facilitate selective targeted MD-CTA
Conclusions

• Many imaging manifestations of BCVI
 – Must recognize all
 • Angiography
 • MRA
 • MD-CTA

Thank you.